Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Part Fibre Toxicol ; 16(1): 28, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277695

RESUMEN

BACKGROUND: Copper oxide (CuO) nanomaterials are used in a wide range of industrial and commercial applications. These materials can be hazardous, especially if they are inhaled. As a result, the pulmonary effects of CuO nanomaterials have been studied in healthy subjects but limited knowledge exists today about their effects on lungs with allergic airway inflammation (AAI). The objective of this study was to investigate how pristine CuO modulates allergic lung inflammation and whether surface modifications can influence its reactivity. CuO and its carboxylated (CuO COOH), methylaminated (CuO NH3) and PEGylated (CuO PEG) derivatives were administered here on four consecutive days via oropharyngeal aspiration in a mouse model of AAI. Standard genome-wide gene expression profiling as well as conventional histopathological and immunological methods were used to investigate the modulatory effects of the nanomaterials on both healthy and compromised immune system. RESULTS: Our data demonstrates that although CuO materials did not considerably influence hallmarks of allergic airway inflammation, the materials exacerbated the existing lung inflammation by eliciting dramatic pulmonary neutrophilia. Transcriptomic analysis showed that CuO, CuO COOH and CuO NH3 commonly enriched neutrophil-related biological processes, especially in healthy mice. In sharp contrast, CuO PEG had a significantly lower potential in triggering changes in lungs of healthy and allergic mice revealing that surface PEGylation suppresses the effects triggered by the pristine material. CONCLUSIONS: CuO as well as its functionalized forms worsen allergic airway inflammation by causing neutrophilia in the lungs, however, our results also show that surface PEGylation can be a promising approach for inhibiting the effects of pristine CuO. Our study provides information for health and safety assessment of modified CuO materials, and it can be useful in the development of nanomedical applications.


Asunto(s)
Cobre/toxicidad , Nanopartículas/toxicidad , Infiltración Neutrófila/efectos de los fármacos , Neumonía/inducido químicamente , Polietilenglicoles/química , Transcriptoma/efectos de los fármacos , Animales , Cobre/química , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ratones Endogámicos BALB C , Nanopartículas/química , Ovalbúmina/inmunología , Neumonía/genética , Neumonía/inmunología , Neumonía/patología , Propiedades de Superficie
2.
Nano Lett ; 18(5): 2844-2851, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29614230

RESUMEN

Nanosize lipid vesicles are used extensively at the interface between nanotechnology and biology, e.g., as containers for chemical reactions at minute concentrations and vehicles for targeted delivery of pharmaceuticals. Typically, vesicle samples are heterogeneous as regards vesicle size and structural properties. Consequently, vesicles must be characterized individually to ensure correct interpretation of experimental results. Here we do that using dual-color fluorescence labeling of vesicles-of their lipid bilayers and lumens, separately. A vesicle then images as two spots, one in each color channel. A simple image analysis determines the total intensity and width of each spot. These four data all depend on the vesicle radius in a simple manner for vesicles that are spherical, unilamellar, and optimal encapsulators of molecular cargo. This permits identification of such ideal vesicles. They in turn enable calibration of the dual-color fluorescence microscopy images they appear in. Since this calibration is not a separate experiment but an analysis of images of vesicles to be characterized, it eliminates the potential source of error that a separate calibration experiment would have been. Nonideal vesicles in the same images were characterized by how their four data violate the calibrated relationship established for ideal vesicles. In this way, our method yields size, shape, lamellarity, and encapsulation efficiency of each imaged vesicle. Applying this procedure to extruded samples of vesicles, we found that, contrary to common assumptions, only a fraction of vesicles are ideal.

3.
Nanoscale ; 8(39): 17322-17332, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27714104

RESUMEN

There is increasing evidence that certain nanoparticles (NPs) can overcome the placental barrier, raising concerns on potential adverse effects on the growing fetus. But even in the absence of placental transfer, NPs may pose a risk to proper fetal development if they interfere with the viability and functionality of the placental tissue. The effects of NPs on the human placenta are not well studied or understood, and predictive in vitro placenta models to achieve mechanistic insights on NP-placenta interactions are essentially lacking. Using the scaffold-free hanging drop technology, we developed a well-organized and highly reproducible 3D co-culture microtissue (MT) model consisting of a core of placental fibroblasts surrounded by a trophoblast cell layer, which resembles the structure of the in vivo placental tissue. We could show that secretion levels of human chorionic gonadotropin (hCG) were significantly higher in 3D than in 2D cell cultures, which indicates an enhanced differentiation of trophoblasts grown on 3D MTs. NP toxicity assessment revealed that cadmium telluride (CdTe) and copper oxide (CuO) NPs but not titanium dioxide (TiO2) NPs decreased MT viability and reduced the release of hCG. NP acute toxicity was significantly reduced in 3D co-culture MTs compared to 2D monocultures. Taken together, 3D placental MTs provide a new and promising model for the fast generation of tissue-relevant acute NP toxicity data, which are indispensable for the safe development of NPs for industrial, commercial and medical applications.


Asunto(s)
Técnicas de Cocultivo , Fibroblastos/citología , Nanopartículas del Metal/toxicidad , Placenta/citología , Trofoblastos/citología , Compuestos de Cadmio/toxicidad , Gonadotropina Coriónica/metabolismo , Cobre/toxicidad , Femenino , Humanos , Embarazo , Telurio/toxicidad , Titanio/toxicidad
4.
J Fluoresc ; 26(3): 963-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26972111

RESUMEN

Interactions between single molecules profoundly depend on their mutual three-dimensional orientation. Recently, we demonstrated a technique that allows for orientation determination of single dipole emitters using a polarization-resolved distribution of fluorescence into several detection channels. As the method is based on the detection of single photons, it additionally allows for performing fluorescence correlation spectroscopy (FCS) as well as dynamical anisotropy measurements thereby providing access to fast orientational dynamics down to the nanosecond time scale. The 3D orientation is particularly interesting in non-isotropic environments such as lipid membranes, which are of great importance in biology. We used giant unilamellar vesicles (GUVs) labeled with fluorescent dyes down to a single molecule concentration as a model system for both, assessing the robustness of the orientation determination at different timescales and quantifying the associated errors. The vesicles provide a well-defined spherical surface, such that the use of fluorescent lipid dyes (DiO) allows to establish a a wide range of dipole orientations experimentally. To complement our experimental data, we performed Monte Carlo simulations of the rotational dynamics of dipoles incorporated into lipid membranes. Our study offers a comprehensive view on the dye orientation behavior in a lipid membrane with high spatiotemporal resolution representing a six-dimensional fluorescence detection approach.

5.
Langmuir ; 31(8): 2472-83, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25664684

RESUMEN

The capability of membrane-active peptides to disrupt phospholipid membranes is often studied by investigating peptide-induced leakage of quenched fluorescent molecules from large unilamellar lipid vesicles. In this article, we explore two fluorescence microscopy-based single-vesicle detection methods as alternatives to the quenching-based assays for studying peptide-induced leakage from large unilamellar lipid vesicles. Specifically, we use fluorescence correlation spectroscopy (FCS) to study the leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles dispersed in aqueous solution, and we use confocal imaging of surface-immobilized large unilamellar lipid vesicles to investigate whether there are heterogeneities in leakage between individual vesicles. Of importance, we design an experimental protocol that allows us to quantitatively correlate the results of the two methods; accordingly, it can be assumed that the two methods provide complementary information about the same leakage process. We use the two methods to investigate the membrane-permeabilizing activities of three well-studied cationic membrane-active peptides: mastoparan X, melittin, and magainin 2. The FCS results show that leakage induced by magainin 2 is less dependent on the size of the encapsulated fluorescent molecules than leakage induced by mastoparan X and melittin. The confocal imaging results show that all three peptides induce leakage by a heterogeneous process in which one portion of the vesicles are completely emptied of their contents but another portion of the vesicles are only partially emptied. These pieces of information regarding leakage induced by mastoparan X, melittin, and magainin 2 could not readily have been obtained by the established assays for studying peptide-induced leakage from lipid vesicles.


Asunto(s)
Membrana Dobles de Lípidos/química , Péptidos/química , Fosfolípidos/química , Microscopía Fluorescente
6.
J Am Chem Soc ; 134(22): 9296-302, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22489643

RESUMEN

Allosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level. We measured single stochastic catalytic turnovers of a monomeric metabolic enzyme (Thermomyces lanuginosus Lipase) while titrating its proximity to a lipid membrane that acts as an allosteric effector. The single molecule measurements revealed the existence of discrete binary functional states that could not be identified in macroscopic measurements due to ensemble averaging. The discrete functional states correlate with the enzyme's major conformational states and are redistributed in the presence of the regulatory effector. Thus, our data support allosteric regulation of monomeric enzymes to operate via selection of preexisting functional states and not via induction of new ones.


Asunto(s)
Ascomicetos/enzimología , Lipasa/metabolismo , Regulación Alostérica , Activación Enzimática , Lipasa/química , Modelos Moleculares
7.
Analyst ; 137(5): 1160-7, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22268065

RESUMEN

The exonucleolytic degradation of high-density labeled DNA by exonuclease III was monitored using two-color fluorescence correlation spectroscopy (FCS). One strand of the double stranded template DNA was labeled on either one or two base types and additionally at one end via a 5' Cy5 tagged primer. Exonucleolytic degradation was followed via the diffusion time, the brightness of the remaining DNA as well as the concentration of released labeled bases. We found a hydrolyzation rate of about 11 to 17 nucleotides per minute per enzyme (nt/min/enzyme) for high-density labeled DNA, which is by a factor of about 4 slower than for unlabeled DNA. The exonucleolytic degradation of a 488 base pair long double stranded DNA resulted in a short double stranded DNA segment of 112 ± 40 base pairs (bp) length with two single-stranded tails.


Asunto(s)
ADN/metabolismo , Espectrometría de Fluorescencia/métodos , Color , ADN/química , Difusión , Exodesoxirribonucleasas/metabolismo , Colorantes Fluorescentes/química , Cinética , Coloración y Etiquetado
8.
Anal Chem ; 83(21): 8169-76, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21967504

RESUMEN

Nanometer-scaled liposomes are used frequently for research, therapeutic, and analytical applications as carriers for water-soluble molecules. Recent technical advances allow the monitoring of single liposomes, which provides information on heterogeneous properties that were otherwise hidden due to ensemble averaging. Recent observations demonstrated that the efficiency of entrapping water-soluble molecules increases with decreasing vesicle size. The molecular mechanism behind this observation is not clear, but enhanced molecule-membrane interactions due to the increase of the surface area-to-volume ratio could play an important role. To investigate this hypothesis, we extended our single liposome assay based on confocal fluorescence imaging by implementation of fluorescence anisotropy. This combination has not been widely exploited, and confocal fluorescence anisotropy imaging in particular has seldom been used. We investigated different small dye molecules and were able to determine if these molecules interact or not with the liposome membrane. We confirm the liposome size-dependent entrapment of molecules whereas the molecule-membrane interactions appear to be independent of liposome size. Our fluorescence anisotropy assay can be used as a general method to investigate molecule-membrane interactions or molecule-molecule interactions in a high-throughput manner in nanometer-scaled containers like liposomes.


Asunto(s)
Polarización de Fluorescencia , Vidrio/química , Liposomas/química , Liposomas/metabolismo , Membranas Artificiales , Fluorescencia , Procesamiento de Imagen Asistido por Computador
9.
Anal Biochem ; 399(2): 251-6, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20004637

RESUMEN

DNA with all cytosines, thymines, or all pyrimidines of one strand substituted by fluorescently labeled analogs shows diminished solubility in aqueous media and a strong tendency to aggregation that hampers enzymatic downstream processing. In this study, immobilization of fully fluorescently labeled DNA on microarrays was shown to resolve the named problems and to enable successive DNA degradation by exonuclease III. Fluorescence correlation spectroscopy and single-molecule counting for monitoring the course of DNA hydrolysis in real time revealed the virtually processive degradation of labeled DNA that occurred at an average rate of approximately 4 nt/s.


Asunto(s)
ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Colorantes Fluorescentes/química , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Espectrometría de Fluorescencia , ADN/química , Hidrólisis , Microscopía Confocal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...